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The photolysis of tetramethyldioxetane at 264 nm was probed using
picosecond spectroscopic technicues. Singlet excited acetone was one of
the observed products. The rise time for acetone fluorescence was

determined to be less than 10 psec. A mechanism consistent with these

results is proposed.




Nearly all photochemical reactions proceed to form products directly
in the ground electronic state. One of the noted exceptions to this
generalization is tetramethyl-1,2-dioxetane (k). It has been reported
that photolysis of % leads to direct formation of electronically excited
acetone of both singlet and triplet multiplicity.1 In this paper we report
the results of our investigation of this unusual photochemical reaction by

picosecond spectroscopy.
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A train of 10 picosecond pulses at 1056 nm was generated with a
neodymium phosphate laser (Holobeam). A single pulse was extracted
and amplified and the second harmonic was produced with a type II KDP
crystal (Lasermetrics). The residual infrared light was removed with
suitable filters. The green light passed through an angle tuned ADP
crystal (Lasermetrics) to produce radiation at 264 nm. The major portion
of the green light was eliminated by reflection of the ultraviolet pulse
with a dichroic beamsplitter. A quartz plate reflected 87 of exciting
light into a vacuum photodiode which was used to trigger a streak camera
(Hamamatsu). The residual green light was removed from ;he excitation
path by means of a Glan-air prism, a Corning 7-54 color filter and a
second dichroic mirror. The excitation was focused to a small spot in
the 2 mm pathlength sample cell. The fluorescence emission was detected

at the rear of the cell with one to one imaging optics. The optics imaged

the emitted light on the 30 micron slit of the streak camera. The
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output of the streak camera was coupled to a SIT vidicon camera. For long
time scale experiments a microprocessor controlled digitizer (RKB) was used.
Due to the weak fluorescence intensity, the signal recorded at the fastest
streak speeds was of a magnitude comparable to the noise.. Consequently,
computer averaging was required to enhance the signal to noise ratio.

For this purpose a vidicon digitizer constructed in our electronics shop, was
interfaced to a Nova 3 computer. Because of the very low signal to noise
ratio we could not accurately determine the onset of the fluorescence.
Therefore, a small part of the green light that passed through the first
dichroic mirror was reflected on a path parallel to the excitation beam.

The optical pathlength of the green light was adjusted so that it arrived
about 70 psec before the ultraviolet excitation pulse. In this fashion

an accurate reference independent of the streak camera jitter could be
obtained. The fast streak speeds of the temporal disperser were calibrated
with an echelon. The apparatus is shown schematically in Figure 1.

The dioxetane was synthesized by the procedure of Kopecky2 and
purified by sublimation and recrystallization from pentane. The solvent
used was acetonitrile (Spectrograde, Aldrich) which showed negligible
impurity fluorescence. There was no detectable change in the absorption
spectrum of the dioxetane sample following the picosecond experiments.
This indicated that insignificant thermal or photochemical decomposition
had occurred. Steady state fluorimetry was performed on a Farrand Mark I
Spectrofluorometer.
Repeloe

The fluorescence emission spectrum of acetone and dioxetane { in

air saturated acetonitrile solution are superimposable with a maximum

at ca. 400 nm. Chemical trapping experiments3 have confirmed that singlet




excited acetone results from photolysis of A. The time dependence of the
fluorescence for k and for acetone is shown in Figure 2. The emission
lifetime for both samples was the same within experimental error and
equal to ca. 2 nsec*, consistent with the reported lifetime of acetone

singlet.“

The initial rise of the fluorescence intensity for dioxetane % is shown
in Figure 3. Within the resolution of the apparatus the fluorescence appeared
coincident with the 264 nm pulse. The intense spike in this figure is due to

the green reference pulse which permits us to establish a time base from shot

to shot and also to monitor the quality of the laser pulse. This pulse
has a fullwidth at half height of about 20 psec. This does not represent
the true temporal profile of the laser but is broadened by the temporal
disperser and distortion of the image in the SIT vidicon camera. Using
the observed reference pulse the fluorescence from dioxetane % could be

deconvoluted from the exciting pulse. This procedure showed that the

rise time for acetone fluorescence from this molecule is less than
ca. 10 picoseconds.5

The possibility that the observed results are due to fluorescence of
both the dioxetane and single acetone was examined. The observed
fluorescence decay is identical to that of acetone (Figure 2). Since
dioxetane absorbs much further in the red than acetone, it is unlikely
that emission from singlet dioxetane escaped observation. The reasonable
conclusion from these observations is that the rise in fluorescence

emission is due to the formation of an excited acetone fragment.

* Due to the low intensity of the fluorescence, it was not possible to

spectrally resolve the emission decay.




In considering the plausible mechanistic details for the unusual
photochemical generation of singlet excited acetone from dioxetane %,
several experimental observations are of importance. First, our
temporal resolution of the fluorescence indicates that there can be no
intermediate species with a lifetime greater than ca. 10 psec between

the state formed by absorption and the emitting acetone singlet. Second,

our comparison of the fluorescence intensity generated by irradiation of
% and of acetone qualitatively confirms the observation that the yield
of singlet acetone from % excited at 264 nm is no more than ca. 30%
(see figure 3). Third, the yield of acetone singlet from photoexcited
% is wavelength dependent, being higher at shorter wavelengths.1

Recent studies of the chemiluminescence of 1,2-dioxetanes have
indicated that the 1,4-biradical formed by cleavage of the oxygen to
oxygen bond precedes chemical formation of excited states, at least
for the triplet producLs.6 Unless this intermediate has a lifetime of
10 psec or less, the thermal and photochemical reactions to form excited
acetone must proceed by different paths. This conclusion is confirmed
by the observation that the ratio of triplet to singlet acetone from
the photolysis is much lower than the corresponding ratio from the

thermolysis.7

In addition, it is difficult to rationalize
the wavelength dependence of the singlet yield if a common biradical
intermediate were present.

Figure 4 is a two dimensional representation of the multidimensional
reaction surfaces for the thermal and photochemical reactions of dioxetane

1. This figure is consistent with the three key observations concerning

dioxetane photochemistry. Absorption of an energetic photon supplies
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sufficient energy to dissociate % to excited acetone instantaneously if
the excess energy is concentrated in the reactive vibrational modes.
Competitive with dissociation, vibrational relaxation through non-reactive
modes funnels the gxcited state of dioxetane to a position on the surface
from which it internally converts to the biradical intermediate with which

the excited dioxetane correlates.®

The biradical formed by this process
may then go on to excited acetone just as in normal chemiluminescence.
This route leads to triplet acetone as the predominant product. i

‘ The wavelength dependence of dioxetane photochemistry is explained by

: this model as a competition between direct dissociation and vibrational

? relaxation which leads to the biradical. With more energetic photons the

; dissociative process is favored leading to the observed increased yield of

l acetone excited singlet state. The energy difference between the singlet

and triplet biradicals is expected to be small. Thus, the rate of inter-

system crossing of this intermediate should be rapid. Coupled with the

unit quantum efficiency for photochemical decomposition, this model suggests

that the barrier for reformation of dioxetane is higher than the decomposition

of the biradical to excited acetone. If the barrier to reclosure was not

the greater, a portion of the biradical could return to the ground state
dioxetane resulting in a quantum yield for dioxetane disappearance of less

than one.

Our interpretation of the photochemistry of dioxetane % implies that
singlet and triplet excited acetone are formed by different but parallel
~outes. Experiments designed to probe the rise time of directly formed
acetone triplet from the irradiation of % are underway.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Captions for Figures

Block diagram of Laser apparatus; S = Sample, F = Filters.

Fluorescence decay from photoexcited acetone (A) and

photoexcited dioxetane (B).

Rise time of acetone fluorescence from excitation of
dioxetane. Note that the intense spike on the left is

the green reference pulse.

Schematic reaction coordinate diagram for the thermal and

photochemical reactions of dioxetane 1.
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